DNA double-strand break repair: genetic determinants of flanking crossing-over.
نویسندگان
چکیده
منابع مشابه
DNA Double-Strand Break Repair
ownloade C regulates a myriad of genes controlling cell proliferation, metabolism, differentiation, and apoptosis. lso controls the expression of DNA double-strand break (DSB) repair genes and therefore may be a ial target for anticancer therapy to sensitize cancer cells to DNA damage or prevent genetic instability. report, we studied whether MYC binds to DSB repair gene promoters and modulates...
متن کاملDNA double-strand break repair
The integrity of genomic DNA is crucial for its function. And yet, DNA in living cells is inherently unstable. It is subject to mechanical stress and to many types of chemical modification that may lead to breaks in one or both strands of the double helix. Within the cell, reactive oxygen species generated by normal respiratory metabolism can cause double-strand breaks, as can stalled DNA repli...
متن کاملHuman Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair
DNA double-strand breaks (DSBs) are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA) is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis ...
متن کاملDouble strand break repair.
DNA double-strand breaks (DSBs) are the most dangerous form of DNA damage and can lead to death, mutation, or malignant transformation. Mammalian cells use three major pathways to repair DSBs: homologous recombination (HR), classical nonhomologous end joining (C-NHEJ), and alternative end joining (A-NHEJ). Cells choose among the pathways by interactions of the pathways with CtIP and 53BP1. HR i...
متن کاملTesting predictions of the double-strand break repair model relating to crossing over in Mammalian cells.
In yeast, four-stranded, biparental "joint molecules" containing a pair of Holliday junctions are demonstrated intermediates in the repair of meiotic double-strand breaks (DSBs). Genetic and physical evidence suggests that when joint molecules are resolved by the cutting of each of the two Holliday junctions, crossover products result at least most of the time. The double-strand break repair (D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1994
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.91.3.1173